If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=7.78t-4.9t^2
We move all terms to the left:
1-(7.78t-4.9t^2)=0
We get rid of parentheses
4.9t^2-7.78t+1=0
a = 4.9; b = -7.78; c = +1;
Δ = b2-4ac
Δ = -7.782-4·4.9·1
Δ = 40.9284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7.78)-\sqrt{40.9284}}{2*4.9}=\frac{7.78-\sqrt{40.9284}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7.78)+\sqrt{40.9284}}{2*4.9}=\frac{7.78+\sqrt{40.9284}}{9.8} $
| 3x+(x+3/7)=6 | | 8a–10=6a | | 3(x8)=x+4 | | 8-5x=2x-12 | | -7(5a+7)-(3-7a)=-24 | | 3-2(2x+5)=-6(x+2) | | 8(3+a)=64a= | | 78+37+t=180 | | 3+2.7x=9.6=3.2x | | 1/2x+1/4=5 | | X-3/5-2=2x5 | | 2(3x-4)=(1/2x-8) | | -3(x+2)+4x=5 | | k-7)/5=10 | | -3p+33=15 | | y/3+6.4=-11 | | z-2=2 | | 85+42=n | | −3x=13 | | f/9-20=-27 | | -22+5x=3x+4 | | 4^x+30=642^x | | 0.15(80)+0.60x=0.30(80+x) | | g/6+17=24 | | 4b^2-16-49=0 | | x=1/5=2/3 | | 7x+0.7=42.7 | | 240=10d | | A+5/n=10 | | 5^(2x+1)=50 | | -36=2x+4-7x | | f/7-20=-24 |